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SUMMARY 

The magnetohydrodynamic flow of an incompressible, viscous, electrically conducting fluid in a rectangular 
duct, with an external magnetic field applied transverse to the flow, has been investigated. One of the duct's 
boundaries which is perpendicular to the magnetic field is taken partly insulated, partly conducting. An 
analytical solution has been developed for the velocity field and magnetic field by reducing the problem to the 
solution of a Fredholm integral equation of the second kind, which has been solved numerically. Solutions 
have been obtained for Hartmann numbers M up to 100. All the infinite series obtained are transformed to 
infinite integrals first and then to finite integrals which contain modified Bessel functions of the second 
kind. In this way, the difficulties associated with the computation of infinite integrals with oscillating 
integrands and slowly converging infinite series, the convergence of which is further affected for large values 
of M ,  have been avoided. It is found that, as M increases, boundary layers are formed near the non-conducting 
boundaries and in the interface region, and a stagnant region is developed in front of the conducting 
boundary for velocity field. The maximm value of magnetic field takes place on the conducting part. These 
behaviours are shown on some graphs. 

KEY WORDS MHD Flows Ducts Channels 

INTRODUCTION 

The study of flows of conducting fluids in ducts in the presence of transverse magnetic fields is 
important, owing to its practical applications in magnetohydrodynamic (MHD) generators, pumps, 
accelerators and flowmeters. Various forms of the problem with different combinations of 
conducting and non-conducting walls have been considered by Shercliff,' Chang and Lundgren,2 
Gold,3 Hunt: and others. Grinberg5v6 has formulated the problem with perfectly conducting 
walls parallel to the applied field and non-conducting walls perpendicular to the field and attempted 
an exact analysis using a Green's function method, but his result is incomplete. Later Hunt and 
Stewartson7 and Chiang and Lundgren' have used boundary layer methods to cast the same 
problem into the form of an integral equation. Recently Singh and Agarwalg followed Grinberg's 
solution procedure for the analytical part but they solved the resulting singular integral 
equation numerically since it could not be solved easily. Hunt and Williams" investigated the 
MHD flow between two parallel non-conducting planes. Wenger' presented a variational 
formulation that gave exact solutions for the velocity profile and electric potential distribution for 
a duct with mixed boundary conditions, but the analysis was of a very complicated nature. 
Recently, W U ' ~  and Singh and LalI3-l5 have applied finite element methods for solving steady 
and unsteady MHD channel flow problems for different wall conductances. 

In all the references cited above for MHD flow in ducts, each wall is either completely a 
conductor or completely an insulator, but not a mixture of two. When the wall is a mixture of 

0271-209 1/87/070697-22$11.00 
0 1987 by John Wiley & Sons, Ltd. Received November 1986 



698 M. SEZGIN 

conducting and insulating portions the problem is much more difficult, and an exact solution is out 
of the question. The present paper deals with the MHD duct flow problem with mixed boundaries. 
So, we consider the flow of an incompressible, viscous, electrically conducting fluid in a rectangular 
duct with an external magnetic field applied transverse to the flow. One of the boundaries 
perpendicular to the magnetic field is taken to be partly insulating and partly perfectly conducting. 
The problem is solved analytically by reducing it to the solution of a Fredholm integral equation of 
the second kind, which has been solved numerically. Several valid approximations have been made 
for large Hartmann numbers in the calculations of the kernel and the right-hand side function of 
this integral equation. All the infinite series obtained in the solution are transformed to infinite 
integrals first and then to finite integrals which contain modified Bessel functions of the second 
kind. So, we have avoided the difficulties associated with the computation of slowly converging 
infinite series, the convergence of which is affected by large values of the Hartmann number. 

BASIC EQUATIONS 

The equations governing steady, laminar, fully developed flow of an incompressible, viscous, 
electrically conducting fluid in a rectangular duct, subjected to a constant and uniform imposed 
magnetic field, are well known and are discussed by Shercliff,' DragosI6 and others. On using a 
standard non-dimensional form the governing equations take the form 

dB 
V 2 V + M - = - l ,  in R ,  ax 

(2) 
av 
ax 

V 2 B + M - - 0 ,  in R 

where R denotes the section of the duct, V(x, y) ,  B(x, y )  are the velocity and induced magnetic field, 
and M is the Hartmann number. Here it is assumed that the applied magnetic field is parallel to the 
x-axis. V(x ,y )  and B ( x , y )  are in the z-direction, which is the axis of the duct, and the fluid is 
driven down the duct by means of a constant pressure gradient. The duct walls are at  x =0, x = a 
and y = f b/2 (Figure 1) .  The walls at x = a,y = k b/2 are insulated completely but the wall at  
x = O  is conducting for a length 1 starting from the origin symmetrically, and the rest of this 
wall is also insulated. 

Accordingly, the boundary conditions for the equations (1) and (2)  relating to the configuration 
of the problem in Figure 1 are as follows: 

V(O,y)= V(a,y)=O, - z < Y < - ,  b b 
2 

b 
B(a,y) = 0 ,  -% y 6 - ,  

2 2 

-(O, aB y )  = 0,  0 d I Y I 1. 
ax 
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Figure 1. 

ANALYTICAL SOLUTION 

We split the solution into two parts as 

(;) = (2) + (Bv:) 

insulated 

(a ,  0 )  
c x  

insulated 

(4) 

where ‘0’ refers to the flow when the wall at  x = 0 is insulated. We shall term it the primary flow. The 
solution corresponding to suffix ‘1’ gives the correction due to the conducting part of the boundary 
and we shall designate the flow due to it as secondary flow. 

Thus, we have 

with the boundary conditions 
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and 

with 
b 
2 V,(O,y)= V,(a,y)=O, - ;dYd- ,  

V’(X, *;)=o, O d x d a ,  

B’(X, *;)=o, O d x d a ,  

- 2 \ y \ - ,  b <  < b 
2 Bl (a, Y) = 0, 

b 
Bl(O,Y) = 0, 1 <  I Y l i C , ?  

aB 1 aB0 -(O, y )  = - -(O, y), ax ax - 1 < y < 1. 

In view of the symmetry about the x-axis, we need to consider the solution only in the region 

The solution for the primary flow is due to Shercliff’ and is given by 
(0 < x < a)n(O < y < b/2). 

{, + 
ch( ?)sh[p.(x - a)] - sh(p,x)ch 

sh P m a  

{ sh(p,x)sh[ $(x - a) ]  - sh( ?)shlp,(x - a)]  

sh prna }cos(y), (12) 

where 
m’n’ M 2  

b2 4 p;=- + -2 

and sh(x) and ch(x) are the sine hyperbolic and cosine hyperbolic functions, respectively. 

follows: 
To find the solution of the secondary flow, we expand V ,  and B ,  in Fourier cosine series as 
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00 

B,(x,y)= m =  C 1 , 3  b,(x)cos(?). (14) 

Substituting for V,  and B, in equations (8) and (9) we obtain the system of ordinary differential 
equations 

where the general solution is 

v,(x) = e-(Mi2)"[(A,ch(p,x) + B,sh(p,x)] + e(Mi2)"[C,ch(p,x) + D,sh(p,x)], (15) 

(16) b,(x) = e-(M'2)"[A,ch(p,x) + B,sh(p,x)] - e(Mi2)x[C,ch(p,x) + D,sh(p,x)]. 

The constants of integrations A,, B,, C,, D, are reduced to one set of unknowns A ,  using the 
boundary conditions (lOa)-(lOd), and finally I/, (x, y) and B,(x, y )  are obtained through equations 
(1 3) and (14) as 

The set of unknowns A ,  is to be determined by using the remaining boundary conditions (lOe), 
(10f). So, substituting B ,  (x, y )  in these boundary conditions, we obtain the following dual series 
equations for A,: 

f A , c o s ( Y ) = O ,  l < y < - ,  b 
m =  1.3 2 

c o s ( y ) ,  O < y < l ,  

(19) 

where cth(x) is cotangent hyperbolic function. 
In its simplest setting the set of equations (19)-(20) was solved by Sneddon" who obtained an 

exact solution. For more complicated equations, such as above, Keer and SveI8 introduced a very 
effective integral representation which reduced the dual series equations to a Fredholm integral 
equation of the second kind. Following Keer and Sve,18 we choose a representation for A ,  as 

where J,(x) is the Bessel function of the first kind of order zero. 
With this representation equation (19) is automatically satisfied on account of the i d e n t i t ~ l ~ ' ~ '  
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f Jo(mt)cos(mx)=$( t2-x2) -1 /2H( t -x ) ,  x+t< . r r ,  (22) 
m =  1.3 

where H(x) is the Heaviside function. Integrating equation (20) with respect to y from 0 to y, and 
then substituting A ,  from equation (21) with the help of the identitylg 

a, I,(st)sh(sx) 
ds, x+ t< . r r ,  (23) s ens+ 1 f Jo(mt) sin (mx) = i (xz  - t 2 ) -  '"H(x - t )  + 

m =  1.3 

we obtain an Abel integral equation 

where 

1 ] J, ( - mrt) sin ( y) dt 

dsdt 
1 +errs 

Here Io(x) is the modified Bessel function of the first kind and of order zero. 
The solution of Abel's integral equation (24) is given by Sneddon;" 

f ( t )  = -- 

Substitutingp(y) in (26) and making use of some well known id en ti tie^,'^ equation (26) is reduced 
to a Fredholm integral equation of the second kind forf(t): 

where the kernel K(x,t) is , 

K(x, t )  = --t 2d b2 { m = 1 , 3  f m[bhcth(pma)-  II m 1 ] J, (m;x)Jo(F) __ 
I 

1 +ens 

and the free term d t )  is 

Since there is no analytical solution of equation (27) it must be solved numerically. To solve the 
Fredholm integral equation we need the value of the kernel and the quantity g, which contain some 
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infinite series and infinite integrals. Our aim is to solve equation (27) for medium and large values of 
the Hartmann number, 10 < M < 100, and this is from where most of the numerical difficulties 
arise. So there are numerous computational considerations which must be taken into account 
before attempting to solve equation (27) numerically. 

COMPUTATIONAL CONSIDERATIONS 

One of the troubles we may encounter in obtaining numerical solutions of the Fredholm integral 
equation(27) is the slow convergence of its kernel K(x,t). The second one is the need for 
discretization with small step sizes for large values of M ,  since the kernel is of order M in that 
case. So, before we start the numerical solution of equation (27), the kernel K(x, t )  and the free 
term g( t )  should be transformed to much more computationally efficient forms. 

Since we are concerned with the MHD flow at intermediate to high values of the Hartmann 
number (10 < M < 100) it is reasonable to approximate cth(pma) in (28) by 1. Then the infinite 
series in the kernel can be transformed into an infinite integral by using contour integration 
(Appendix I, equation (49)). So, the kernel (28) takes the form 

By taking t = p l  and x = tl the Fredholm integral equation (27) may be rewritten as 

Q )  + I1 K,( t ,P)~( t )d t  = WP), 0 < P < 1, 
0 

where 

and 
O(P) =f(b)/h &) = g ( b ) / b  

The first infinite integral in the kernel (33) was evaluated with the help of the identity2' 

Jo(at)Jo(~x) = A J J o [ a ( t 2  + x2 - 2 tx cos 8)1'2] dB 
= o  

and the identity obtained in Appendix I1 (equation (54)). Now, the kernel K ,  (t ,  p )  takes a much 
more computationally efficient form 
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where r2 = l Z ( p z  + tZ - 2ptcos8) and Zo(x), Z,(x) and Ko(x), Kl(x) are the modified Bessel 
functions of the first and second kinds of orders zero and one, respectively. 

The second infinite integral above was evaluated numerically. The free term h ( p )  in the integral 
equation(31), given by equation (34) can also be modified by summing the terms in M/2 
analytically with the help of the following result (Appendix 111): 

where x + t < IT. 
So, h ( p )  takes the form 

Now, the Fredholm integral equation (31) will be solved with the kernel (35) and the free term 
(36) which are in a more easily computable form. For the solution we replace the integrals by 
numerical quadratures based on Gauss’s formula, and a system of algebraic equation is obtained 
for the unknown function 8 (therefore f through (32)) in the representation Am (equation (21)). By 
solving this system of equations for f one can determine V,(x,y) and Bl(x,y). By virtue of the 
equation for Am, the value of the function f can be substituted back into Vl(x,y), B,(x,y) as 

Since the term sh[pm(x - a)]/sh(pma) can be approximated by e-pm(2“-x) - e-pmx for large M, 
we need the following type of series for the calculations of V,  and B,: 

f e-kpm J, (7) cos ( y ), where k > 0. 
m =  1,3 

This series has been transformed into an infinite integral (Appendix IV) using contour 
integration and found to be 

f e-kpmJO (F) cos (F) = & Jm e-kJ(.~2+MzWo(t~) cos (ys) ds 
m =  1.3 0 

Both of these infinite integrals can be transformed to finite integrals containing modified Bessel 
functions only (Appendixes V and VI) where the term ch(ys)/(ebs + 1) in the second infinite integral 
was written as +[e-(b-Y)s + e-(b+Y)s - e-(zb-Y)s - e-(zb+Yb + ew(3b-y)~ + . . .] and approximated by 
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taking the first term $e-(b-y)s only, since the other terms were very small. 
Finally, V,(x,y) and B,(x,y) take the forms 

where 

8 + y)' + x'] 
- x  ~ 

J[(tcos8+y)2+x2] 

K ,  (FJ [ ( t cos  8 + (b - y))' + x2] ) 
\ '  1 
J [ ( t  cos 8 + (b - Y ) ) ~  + x2] 

+ X  

K ,  T J [ ( t ~ ~ ~ 8  + (b - Y ) ) ~  + (2a - x ) ~ ]  
- (2a - x) (" ' } d8dt. (41) J [ ( t  cos 6 + (b - y))2 + (2a - x)'] 

By adding the primary solution Vo(x, y), Bo(x,  y) from equations (1 1) and (12) to the secondary 
solution V, (x, y), B ,  (x, y) obtained above one can find the velocity V(x, y) and the induced magnetic 
field B(x ,  y) for the duct problem. 

The magnetic field on the conducting portion of the mixed boundary can be found directly from 
the substitution of A, into B,(O,y), since B,(O,y) is zero. Simplifying, we obtain 

and, with t = y ch 6, 
arc ch(l/y) 

B(0, Y) = - s f (y  ch 0) d8. 
7 1 0  

For y = O  

(43) 

The function f was interpolated with Gauss-Legendre abscissae at the points y ch 6, using 
Lagrange interpolation. The induced magnetic field was computed from (43) and (44) on the 
conducting boundary by using Gauss-Legendre integration. 

The infinite integral, from M / 2  to co, in the kernel (33) was first transformed to the form (by 
taking s = M/2u) 
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The first integral was extended t a [  - 1,1] and then Gauss-Chebyshev quadrature was used; the 
second integral was evaluated with the 16-point Gauss-Legendre integration formula. 

NUMERICAL RESULTS AND DISCUSSION 

The duct (0 d x d a) n ( - b/2 d y d b/2) (a = 1, b = 1) was divided into a mesh by taking mesh sizes 
0.05 in each direction. For the velocity field near y = 0, finer meshes were chosen to obtain desired 
accuracy in the results. Throughout the computations double precision was used except for solving 
the system of linear algebraic equations, as the matrix solver LEQT2F (IMSL library) was only 
available in single precision. 

Equal velocity and induced magnetic field lines have been drawn for 10 d M d 100 and for 
several values of 1 by using the SURFACE I1 contour package on the Honeywell Multics machine 
at the University of Calgary, Canada. The non-smoothness of some curves is due to the linear 
interpolation used in that package. In Figures 2 and 3, equal velocity lines have been depicted for 
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Figure 2. Velocity lines for M = 20, I = 0.25 
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3 

I = 0.25 and for M = 20 and 100 respectively. As M increases, there is a formation of boundary 
layers of thickness M on the non-conducting parts of the boundaries. The increase in the value of 
1 results in enlargement of the stagnant region in front of the conducting portion, as is shown in 
Figures 4 and 5 for M = 50 and 1 = 0.1,1= 0.35, respectively. Also there is a parabolic boundary 
layer with thickness of order M-”’ at the points of discontinuity on the boundaries. This 
boundary layer has been shown using dotted lines; it is more pronounced for larger values of I or M .  
For smaller values of 1 or M the two layers have larger thicknesses and therefore tend to interfere 
with each other, so they are not demonstrated sufficiently. 

The effect of varying M on the current lines (induced magnetic field lines) is shown in Figures 6 
and 7 for M = 20 and 100, respectively. For the pattern of current lines the duct can be divided into 
two regions separated by the line B = 0. As we increase M ,  the region for which B > 0 keeps on 
increasing. Also the region characterized by B < 0 is split into two for M exceeding a certain critical 
value. The maximum value of B, of course, occurs on the conducting part. 

The effect of increasing 1, the conducting part, on current lines is similar to that of increasing M 
for a fixed 1. This is shown in Figures 8 and 9, where M = 50. 

The extension of the solution procedure used here to two rectangular ducts connected by a 
barrier which is partially a conductor and partially an insulator is given in Reference 22. 
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APPENDIX I 

Consider the integral of 

F(z) = [J(z’ + u’) - z]~,(az)J,(bz)exp (46) 

taken along the contour shown in Figure 10. 
We can show that 

and 

[yF(z)dz=O as p+O. 

Hence we have 

[I [J(t’ + u2) - t]J,(at)J,(bt)exp (ilt) - sec (;) dt 

+ lim C [J(m’ + u’) - m]J,(am)J,(brn) 
p - 0  m = 1 , 3  s: 

exp[ ~ ( W I  + peiR)]sec[ :(m + peie)]ipciRdO 

+ r+ [J(u’ - y’) - iy]J,(iay)J,(iby)exp 
W 

[J(u’ - y’) - iy]J,(iay)J,(iby)exp - -y sech - idy= 0. ( 3 )  (9). 
By simplifying we obtain 

m 

- 2 2 [J(m’ + u’) - m]J,(arn)J,(bm) 
m =  1 , 3  

(47) 

Figure 10. 
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Taking real parts only we obtain 
a, 

[ , / ( m 2  + u’) - m]Jo(am)J0(bm) = [,/(t’ + u’) - t]J,(at)J,(bt)dt 
m = 1 , 3  

APPENDIX I1 

where 

SO, 

Taking th d 

p -  =+[(a’ + y’)”’ - a], 

p +  =+[(a’ + y’)1/’ + a]. 

dP- - P -  dP+ - P +  - -- - 
da ,/(a’ + y * ) ’  da ,/(a’ + y ’ ) ‘  

rivative of J with respect to a: 

[ l o  ( P P  - ) P  + K 1 ( P P  + 
P a, d J  

= j e-a‘82+X2)”2 Jo(yx)dx = - 
da 0 ,/(a’ + Y’) 

+ KO ( P P  + )P - 11 ( P P  - )I. 
Taking the second derivative of J with respect to a: 

+2P+P-~l(PP-)Kl(PP+)l .  
Letting P + O  in (52), we obtain 

a 
(a’ + y’)3/’ ‘ 

xe-“”J0(yx)dx = 

Then subtracting (53) from (52) and letting a + 0, we obtain 

] o [ ( P 2  + x2)’/’ -xlJo(yx)dx = + P ’ [ Z o ( $ P y ) K 0 ( ~ P ~ )  + ll(+Py)Kl($P~)1. 

APPENDIX I11 

For the evaluation of 
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, t + x < x ,  

m =  1.3 m2 

we start with the identity19 

{ 
- x 2 ) -  1’2, x < t ,  

m =  1.3 x > t ,  
f Jo(mt)  cos ( m x )  = x + t < n .  

Integrate (56) with respect to x ,  then 

+arcs in( :), x < t ,  

x x > t .  

Jo(mt)  sin ( m x )  
m =  1.3 m 

Integrating (57) with respect to x again we get 

+ +(t2 + x2)1/2 - i t ,  x < t ,  
~- 

x > t .  
ITX 

i t ,  =I 4 

5 Jo(mt)  f Jo(mt)  cos ( m x )  
m = t , 3  m2 m =  1.3 m2 

Since” 

2 Jo(mt)  cos (mx)  - - 
m =  1.3  m2 x 2  x x  

s - 4 ’  
Integrating (58) with respect to x, we obtain 

x < t ,  

x > t .  

713 

(55) 

(57) 

- x2)1/2 - +(t’ + 2x2)  arcs in 
iT2x 3 

.f Jo(mt)  sin (mx)  

_ _ _ _  x > t ,  
m =  1,3 m3 

(59) 
If x = 7112 and t < 1112 then 

x 
Jo(mt) sin ( y )  

m =  z 1.3 m3 32 
= -(.2 - 2 t 2 ) .  

APPENDIX IV 

Consider the integral of 

F ( z )  = e-kJczZ+U2)Jo(az) cos (bz) exp ($) sec ( y  ), 
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ie z = m +  pa 

I 3 5 7 - - -  

Figure 11. 

taken along the contour shown in Figure 1 1 .  
We can show that 

j rF(z)dz=O as R-oo 

jyF(z)dz=O as p + O .  

and 

Hence we have 

J,(ax)cos(bx)dx 

J,(i ay) cos (i by)i e-ny/2 sech 

+ 1; e~k~~u’~~‘~JO(iay)cos(iby)ie~ny~2sech 
Taking real parts only we obtain 

=;so” e-kJ(xz+U2)Jo(ax) cos (bx) dx 

since 
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and 

ie-k~cy’-uz)ZO(ay) ch (by) e-‘Y/2 sech - 

APPENDIX V 

Consider the integral 

Since 

integral (64) can be written as 

R = !- e-kJ(u’ca’) {’ cos (at cos 8) cos (ycx)dOdcc 
n 0 

- k Ju’+a’ 

= .-!- 1: 2n 0 

= Lj: [ 2n 

jn [ cos cc(tcos 9 + y )  + cos a(t cos 8 - y)]d9da 

e-kJ(uz+a’)cosa(tcos 8 + y)da 

+ j: e-kJ(u’+a’)cos ~ ( t c o s  9 - y)da d9.  

For the evaluation of the infinite integrals above we make use of the identitylg 
1 

dx e-BJ(Y’+X’) cos (ax) = KO CY&’ + P2)1. J( r2  + x2) 
By taking the derivative of (66) with respect to we arrive at  

Now, substituting (67) back into (65) we obtain 

Id8 K,(uJ[(tcos8+y)2 +k2]) K1(uJ[(tcos8-y)2+ k23) + =‘j; 2n [ J[(tcos 9 + Y ) ~  + k2] J [( t  cos 8 - y ) 2  + k2] 
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uk lom e-kJu2+a2 cos(ya)J,(at)da = - 
n: lo J[(tcos8+y)’+kZ] 

K,(uJ [ ( t  cos 8 + y)’ + k2]) de. 

APPENDIX VI 

For the evaluation of the integral 

We take s2 - (M2/4) = u’; then 

I,[ tJ( u2 + $)]ch[ y J( uZ + $)] udu 
= lom sin (ku) 1 + ebJ(uz +M2/4) J( 24’ + $)* 

So, we need the integral of the following type: 

For the evaluation of the above integral we consider the integral of 
,izk 

taken along the contour shown in Figure 12. 
We cail show that ScF(z) dz = 0 and 

JrP(z)dz=O as R+co and lim F(z)dz=O. 
p - 0  s Y 

Hence 

Figure 12. 
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i(p +) 0 

+ i m  i(p - ) 
+ F(iu)(idu) + F(iu)idu = 0. 

Now, 

Taking the real part we obtain 

Differentiating with respect to k, we obtain 
m 

e-BJ(u’+P’)Io[t J(u’ + p ’ ) ]  u sin (ku) du = cos(pu)Jo(ut)e-kJ(u’+P2)dU 
Jh’ + P’) 0 

717 

(72) 

(75) 

(from Appendix V). 
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